



## GCE PHYSICS

S21-A420QS

## **Assessment Resource number 4 Newtonian Physics Resource D**

 (a) In an investigation of projectile motion, a student throws a stone. It is moving horizontally when it leaves his hand (at point P). It reaches the ground at point Q.



|     |       | (i)     | By analysing a video of the stone's flight, its horizontal velocity component, $\nu$ found to be almost constant. Discuss whether or not this is to be expected.                                          | nponent, $v_{\rm h}$ , is pected. [2] |  |
|-----|-------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
|     |       |         |                                                                                                                                                                                                           |                                       |  |
|     |       | (ii)    | The approximate value of $v_h$ obtained from the video was $9.0\mathrm{ms^{-1}}$ . Determine whe this value is consistent with the measured distances recorded in the diagram. So your reasoning clearly. |                                       |  |
| (b) | Calcu | late th | e magnitude <b>and direction</b> of the stone's velocity just before it hits the ground.<br>[4]                                                                                                           | •••••                                 |  |
|     |       |         |                                                                                                                                                                                                           |                                       |  |
|     |       |         |                                                                                                                                                                                                           |                                       |  |

2. The diagram shows the dwarf planet, Eris, at one point in its orbit.



| (a) | Explain why the moment (about the centre of the Sun) of the Sun's force on Eris is a | ero. |
|-----|--------------------------------------------------------------------------------------|------|
|     |                                                                                      | [1]  |
|     |                                                                                      |      |

.....

(b) Calculate the work done by the Sun's gravitational force on Eris as Eris moves from A to B. The mean values of the force and the angle at which it acts are shown on the diagram.
[2]

.....

(c) Showing your reasoning clearly, determine whether your answer to (b) is consistent with these data:

Mass of Eris = 
$$1.66 \times 10^{22} \text{kg}$$

| <b>3.</b>     | (a) | State the principle of conservation of momentum.                                                                                                                                 |     |  |  |  |
|---------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
|               | (b) |                                                                                                                                                                                  |     |  |  |  |
| (i)           | Tro | Momentum / Ns  Time / ms  Time / ms  Olley Y has a mass of 2.4 kg. Determine its velocity after the collision.                                                                   | [3] |  |  |  |
| (ii)<br>(iii) | Us  | sing the same graph grid (opposite) carefully sketch a graph of Y's moretween 0 and 300ms.  se the momentum-time graph for X to estimate the mean <i>force</i> on X du allision. |     |  |  |  |

| 4 |  |
|---|--|
| • |  |

(a) Vadim uses a ruler to measure the sides of a copper block. He records the measurements as:

length =  $50 \pm 1$  mm, breadth =  $42 \pm 1$  mm, height =  $36 \pm 1$  mm.

Using an electronic balance he measures the mass of the block as 670.85  $\pm$  0.01 g.

Use Vadim's data to answer the following.

| alue for the density of copper in kg m <sup>-s</sup> and the <b>absolute</b> uncertainty<br>[4]                  | (1)  |
|------------------------------------------------------------------------------------------------------------------|------|
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
|                                                                                                                  |      |
| number of atoms per m <sup>3</sup> of copper. The uncertainty is <b>not</b> required ass of copper is 63.5u. [2] | (ii) |
|                                                                                                                  |      |

| (b) | (i)    | I.      | Calculate the number of molecules per m³ for a gas (assumed to be ideal) at a temperature of 15 °C and a pressure of 101 kPa. [3]                                                                              |
|-----|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |        |         |                                                                                                                                                                                                                |
|     |        |         |                                                                                                                                                                                                                |
|     |        |         |                                                                                                                                                                                                                |
|     |        | II.     | When asked why there are far fewer gas molecules per m³ than atoms per m³ in the copper block, a student replies, "Each molecule of the gas takes up much more space." Discuss whether or not he is right. [2] |
|     |        |         |                                                                                                                                                                                                                |
|     | (ii)   | I.      | Two gases have molecular masses $m_{(1)}$ and $m_{(2)}$ . Show clearly that when the gases are at the same temperature, the ratio of the rms speeds of their molecules is: [2]                                 |
|     |        |         | $\frac{c_{\text{rms}(1)}}{c_{\text{rms}(2)}} = \sqrt{\frac{m_{(2)}}{m_{(1)}}}$                                                                                                                                 |
| II. |        | ules i  | ne percentage difference in the rms speeds of nitrogen and oxygen in the same sample of air. Take the percentage difference to be                                                                              |
|     |        |         | rms speed for nitrogen – rms speed for oxygen<br>rms speed for oxygen                                                                                                                                          |
|     | [Molec | cular i | mass for nitrogen = 28.0 u. Molecular mass for oxygen = 32.0 u.] [2]                                                                                                                                           |
|     |        |         |                                                                                                                                                                                                                |
|     |        |         |                                                                                                                                                                                                                |